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LElTER TO THE EDITOR 

Non-universal freezing in an alternating-bond Glauber chain 

Stephen J Cornellt, Kimmo KaskiS and Robin B Stinchcombe 
Department ofTheoretical Physics, University of Oxford, 1 Keble Road, Oxford 0x1 3NP, 
UK 

Received IO May 1991, in final form 17 June 1991 

AMnct. Analytical and Monte Carlo techniques are used to study a Glauber king chain 
with spatially modulated coupling strengths, under slow cooling approaching absolute 
zero. The spin configuration freezes if an appropriately-defined effective time does not 
diverge. The relationship between energy and cooling rate is found to  be non-universal 
with respect to the cooling programme. Ratematching arguments are used to clarify this 
non-universality, Io categorize freezing behaviours, and to  remove ambiguities present i n  
previous discussions. 

When a thermodynamic system is cooled at a finite rate, it will depart from equilibrium 
when internal rates become too slow for the system to keep up with the external 
cooling. Depending upon the details of the system and the cooling programme, the 
system may then remain in the non-equilibrium state indefinitely. Such a situation 
occurs in the preparation of amorphous solids, spin glasses and other glassy systems. 
The frozen state is heavily dependent upon the cooling schedule, in particular upon 
the cooling rate. 

The relationship between the cooling rate and the frozen values of such quantities 
as residual entropy and energy have been a topic of recent interest. This is related to 
the problem of simulating the equilibrium properties of such a system. A power law 
relationship of energy E with respect to cooling time T 

E oc 7-F  (1) 

has been conjectured by Crest el al [I]  for non-NP-complete problems, whereas a 
modified logarithmic law 

&a:( logT)"  (2) 

has been proposed by Huse and Fisher [2] as a more general relationship. 
The validity of either relationship (1) or (2) is difficult to establish rigorously. There 

is a dearth of analytical results in this area, and many simulational results are only 
obtained over one or two decades of T, and so may fit either law equally well. However, 
under slow cooling exact results have been obtained for simple kinetic Ising models 
without random disorder. Although such systems arguably bear little relationsliip to 
real glassy systems, they give insight into the mechanism of freezing itself. This helps 
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us to understand more complex systems, just as studies of king systems have helped 
our understanding of the behaviour both near to and far from equilibrium. Kob and 
Schilling [3,4] have modelled a chain of particles, coupled by anharmonic double-well 
forces, by a kinetic Ising chain with an energy barrier, and under a cooling programme 
of the form 

dT/df = T - ' ~ ( T )  (3) 
obtain a relationship of the form (1). Simulations of the chain of particles [5] only 
agree with the predictions of the king approximation for very small values of the 
energy barrier. Jackle ef 01 [6] have studied perhaps the simplest exactly-solvable 
collective system with intrinsically activated relaxational dynamics, an king chain with 
alternating values for the nearest-neighbour coupling strengths, and obtained two 
universality classes of cooling programme. However, one of these universality classes 
occurs for a cooling programme that is not of the form (3). 

In this letter, we summarize and extend the analytic results of [ti] for two universality 
classes of cooling of the form (3). We then compare these results with our Monte 
Carlo simulations of this system under slow cooling. 

The model we consider is an king chain with alternating coupling constants, that 
is described with the following Hamiltonian 

where 

U< = *1 ( 5 )  

and 

A for i odd, 
"={I3 ( < A )  for i even. 

The system is subject to Glauber single spin-flip dynamics, where the probability 
per unit time W, for a spin-flip energy by a change A is 

(7) 

We have normalized the unit of time to the bare spin-flip rate. By choosing alternating 
values for the coupling constants, there are no zero-energy spin-flips, so that all 
processes require an activation energy. This fact gives rise to a non-universal value for 
the dynamic critical exponent z = 1 + A/B [7]. It also means that the spin configuration 
may not evoive at absoiute zero temperature. Tnus ihe system may freeze in a non- 
equilibrium state if the system is cooled to approach zero temperature asymptotically. 

From now on we describe the system in terms of the density of kinks on the weak 
bonds K = ;( 1 -(upi+,)) ( i  even), which is proportional to the energy of the system 
at low temperatures (when there are vanishingly few kinks on the strong bonds). The 
quantity K is also a measure of the inverse average domain size. The system is 
iransiaiionaiiy invariani over even muiiipies of the iaiiice coiisiaiii, aiid so the c o d a -  
tion functions are functions not only of the separation of the spins but also of whether 
the spins are even or odd. The equations of motion of the four different spin-spin 
correlation functions are coupled linear differential equations, whose coefficients are 
functions of time when temperature is vaned. Elimination between these equations 
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yields a tractable form only in the limit of slow cooling and low temperatures. In this 
limit, the equation of motion of the even-even correlation function g(x, t )  = ( U ; U ( + ~ )  is 

where [=exp(tpB) is the equilibrium correlation length and w =exp[-2p(A- B ) ]  is 
the Arrhenius factor associated with spin-flips at domain walls. Both are time dependent 
(through the time dependence of temperature) during a cooling procedure. We make 
a change of variable to the eflective time U =& w df, and use an integrating factor 
exp I," c-2 du, to transform (8) into a standard diffusion equation. The correlation 
function will therefore not relax to its zero temperature value if the final effective time 
U( f = m) is finite. This will always be the case if the zero temperature is reached in 
finite time, but not necessarily if we choose cooling programmes that approach absolute 
zero asymptotically in accordance with the third law of thermodynamics. 

The equation may be exactly solved by standard techniques. If the initial cooling 
rate is much slower than the initial equilibration rate then the final solution is found 
to be independent of the initial conditions. For two classes of cooling programme, 
both consistent with (3), asymptotic analysis in the limit of slow cooling yields: 

(i) For a cooling programme of the form 

o = w ( O ) e x p ( - t / ~ )  (9) 

the asymptotic frozen kink density varies like 

(ii) For a different cooling programme, of the form 

o = W ( o ) / ( l + f / T ) d  (11) 

the form obtained for the dependence of the frozen kink density upon the cooling 
parameters T and d is: 

where &= W - ' / ' " - ~ ' ( O )  is the initial value of the correlation length, and a is defined by 

Changing T but keeping d constant yields K Q T - " ~ .  (In [a], the particular choice 
dcCl/log T was made, leading to 6~ not being simply a function of I / T .  This cooling 
programme is not of the form (3) ,  and yields a threshold behaviour K ~ : ( T ~ - T ) ' / ~ . )  

The freezing exponent is dependent upon the non-universal dynamic critical 
exponent z, as would be expected. Perhaps more surprisingly, however, the freezing 
exponent is also non-universal with respect to the details of the cooling programme, 
even for systems within the same universality class for critical dynamics. This occurs 
in spite of the fact that we have constrained ourselves to cooling programmes of type 
(3) (i.e. with a well defined characteristic cooling time), which approach absolute zero 
only asymptotically. Whilst other dynamical phenomena (e.g. domain growth, critical 
dynamics) display less universality than static phenomena, it is still the case that the 
characteristic exponents for such phenomena are a property of a given system, By 
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constrast, a given system possess freezing exponents which depend continuously upon 
the type of cooling to which it is submitted. 

To confirm this unexpected result of the analysis, we performed Monte Carlo 
simulations of the model system under continuous cooling. A chain of size 1024 spins 
was used, which was sufficiently large for finite size effects to be unimportant for the 
cooling programmes used, where the largest domain size was -30 units. The choice 
AIB = 3 was made, yielding z = 4. The lattice was split into two sublattices, to exploit 
the vector processing capability of the machine used (Stardent 1500). The system was 
prepared in a state corresponding to thermal equilibrium at temperature T=2B/kB, 
and then the temperature was changed in discrete steps, with a constant number of 
sweeps at each temperature. Different values for the parameter T were obtained both 
by rescaling all flip probabilities by the ratio T / T ~ ,  where T~ is the slowest cooling 
time, or by altering the number of Monte Carlo sweeps per temperature step. Between 
16 and 60 independent runs were performed for each set of values of the cooling 
parameters. The results for the two classes of cooling programme were as follows. 

For the cooling of type (i), 10 values of T in the range 3 x 102-106 were simulated. 
The kink density as a function of temperature during cooling programmes correspond- 
ing to five typical values of T is shown in figure 1. The final value of the kink density 
on a log-log scale is plotted against T in figure 2. A straight-line fit yields the gradient 
0.254*0.02, compared with the theoretical value l / z  = 0.25. 

* 
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Figure 1. Kink density as a function of temperature during five cooling procedures of type 
(i) (see text). The lower line represents the density of kinks on strong ( A )  bonds. The 
dotted curve is the equilibrium value of the kink density. 

For the cooling of type (ii), six values of T were simulated for d = 2, 3, 4, 5.  
Figure 3 shows the kink density as a function of temperature for six different values 
of T at d = 4. Figure 4 is a log-log plot of the final kink density against T for four 
different values of d. The gradients of the straight line fits are shown in table 1. 
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Figure 2. Frozen kink density far ten values of T for cooling programmes of type (i), on 
a log-log scale (see text). The triangles (with error bars) are averaged over 32 independent 
runs, the circles over 16 runs. The line i s  a fil to the data, with gradient -0.254*0.02. 
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Figure 3. Kink density as a function of temperature for cooling procedures of type (ii) 
(see text), for six values of I, wilh d =4. The lower CUNe is the density of kinks on strong 
bands. The dotted curve is the equilibrium value of the kink density. 
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10.3 

Figure 4. log (frozen kink density) as a function of log 7, for cooling programmes of type 
(ii), for six values of T at each of four values of d (see text). The straight lines are each 
fits fa the data for a particular value of d; for the gradients, see table 1. 

Table 1. Gradients go of a plot of log T against log K, for cooling programmes of type (ii), 
divided by the theoretical values 8,. 

2 0.95+0.06 
3 0.97 t 0.02 
4 1.04t 0.02 
5 0.99 + 0.02 

To test the d-dependence of the final kink density, figure 5 is a plot of K, against 
(d = I)''', where 

At each value of d, the different points correspond to different values of T, which 
are coincident due to the removal of the 7 dependence in K,. The straight line is the 
theoretical fit of a straight line through the origin, predicted by (12). 

The exponent for the cooling class (i) is easily explained by arguments based on 
movement of domain walls [SI. Single spin-flips at domain walls occur at a rate 
proportional to U,  and after a number of the order of f' of such flips a given domain 
wall reaches and annihilates with another domain wall. The equilibration time of this 
system is therefore f 2 f  o = f' [7], so that we expect the system to fall out from 
equilibrium when the cooling time satisfies T = f', reproducing (10). 

In order to explain the results (13), however, we need to be much more precise in 
our definition of the cooling rate. The system falls out of equilibrium in. response to 
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Figure 5. Frozen kink densities from the logarithmic cooling programmes, plotted in the 
form K, against (d-11'" (see text). The straight line is a least squares fit, constrained to 
pass through the origin. Open diamonds: d = 2 :  filled diamonds: d = 3 ;  open triangles: 
d = 4; filled triangles: d = 5. 

the change in the equilibrium values of the system coordinates. A given coordinate 
falls out of equilibrium when its relaxation rate is of the order of the fractional rate 
of change of its equilibrium value. The relevant cooling rate is therefore specific to 
!he preperty ~ d c r  cansideration. !E partim!ar, we are interested in the domain size 
of the system which we identify as the inverse kink density. Then we define the cooling 
rate with respect to domain size as 

d 
r,=-log(. 

df 

Under this definition, we see that the cooling rate for programme (i) is constant, 
whereas for (ii) the cooling rate becomes a function of time. We expect that the system 
will freeze at a point where the cooling rate is equal to the equilibration rate rcq 

with a constant of proportinna!i!y that is independent of 7 but possibly dependent on 
the class of cooling programme. Using (=d'('-*), (16) yields result (13). It is 
interesting to note that the d-dependent factor in (12) is not reproduced; this is to be 
expected, since as d -* 1 the system spends more and more time relaxing after departing 
from equilibrium, and so the approximation that the system freezes abruptly becomes 
less and less valid. Case (i) then corresponds to a 'natural' choice for cooling pro- ., eramme: since all relaxation times in the system are of Arrhenius form. 

Theabove two choices of cooling programme yield asymptotic power law behaviour 
for freezing, but we might ask whether other types of relation may occur for different 
cooling programmes still consistant with (3). Suppose a cooling programme where the 
correlation length varies like ( =f( t / ~ )  freezes at t = t,, where the correlation length 



~ 8 7 2  Letter to the Editor 

is f F ( r ) = f ( l F / r ) .  Then (16) produces a differential equation for (fF/r), which may 
be integrated to provide the dependence of tF on T through 

f ; - ' ( # ) T T = h ( ( F )  dCF(r') dr '  
7 

where h is some function specific to the choice of the functional form of cF. This may 
be inverted to produce h - ' ( t F / r )  = t F ( r ) ( = f ( l F / r ) ) .  A cooling programme that pro- 
duces a prescribed freezing relation & is then given by 5 ( t / r ) = h - ' ( t / r ) .  Then we 
make the following remarks: 

l F / r  approaches a finite limit if & varies more slowly with T than with TI'* .  A 
cooling programme that approaches zero temperature asymptotically must be character- 
ized by f F / r  diverging as T diverges, so programmes of this type may never produce 
freezing relations (such as logarithmic ones) that are slower than this form. Other 
(faster) relationships, e.g. that arising in programme (ii), &- exp(yr) etc. are possible. 

Any relationship between & and T is possible for cooling programmes reaching 
absolute zero in finite time. For instance, # ( t / r )  = l / log(l-  l / ~ )  gives .$F-lOg(T). 

In [SI, Kob and Schilling chose a cooling programme of the form 

Tocexp(-yr)). (18) 

For y sufficiently small, the cooling programme is equivalent to (i) in the freezing 
region, and so their predicted power law should hold. However, the relaxation times 
of their system are Arrhenius in form, and so a cooling programme of the form (9) is 
again a more natural choice. The choice (18) in (16) yields a transcendental equation, 
so there is a broad crossover region before the true asymptotic region is reached. This 
is supported by the fact that in some cases they were unable to obtain the predicted 
asymptotic behaviour, and suggests they were actually in the crossover region. 

We remark that the two-level system studied by Huse and Fisher [Z] is another 
example of a system with Arrhenius-like relaxation times. One therefore obtains a 
non-universal exponent if cooling schedules other than (3) are used. 

If the relaxation time for a given mode is not Arrhenius-like, or the coordinates of 
the system are not proportional to Boltzmann factors, a cooling schedule of form (i) 
will not be a natural choice, and equation (16) will not yield a power law relationship. 
True glasses, for example, are characterized by relaxation times that obey the Vogel- 
Tamman-Fulcher law 

A cooling programme of the form X-exp(-t/r), where X is a Boltzmann factor, 
will then give a freezing relationship of the form 

(constant) 
log T 

x = x,+ 

where X, is the value of X at the initial temperature To. 
In conclusion, we have shown for a ID kinetic lsing model that the relationship 

between frozen kink density and cooling rate is non-universal with respect to the type 
of cooling programme used. Even for cooling programmes in the same universality 
class, an 'unnatural' choice can lead to a broad crossover region before the asymptotic 
relationship holds. For cooling programmes approaching absolute zero asymptotically, 



Letter to the Editor L873 

the slowest relationship that may be obtained is a power law. For simulations that 
lower the temperature to absolute zero in finite time, any relationship may be obtained, 
and so the cooling rate needs to be specified more carefully in order to ensure that 
the appropriate law is observed. 
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